Name	(Last, First):								
Studen	nt ID:								
Circle	your section:								
201	Shin	8am	71 Evans	212	Lim	1pm	3105 Etcheverry		
202	Cho	8am	75 Evans	213	Tanzer	$2 \mathrm{pm}$	35 Evans		
203	Shin	9am	105 Latimer	214	Moody	$2 \mathrm{pm}$	81 Evans		
204	Cho	9am	254 Sutardja Dai	215	Tanzer	3pm	206 Wheeler		
205	Zhou	$10 \mathrm{am}$	254 Sutardja Dai	216	Moody	3pm	61 Evans		
206	Theerakarn	$10 \mathrm{am}$	179 Stanley	217	Lim	8am	310 Hearst		
207	Theerakarn	11am	179 Stanley	218	Moody	$5 \mathrm{pm}$	71 Evans		
208	Zhou	11am	254 Sutardja Dai	219	Lee	5pm	3111 Etcheverry		
209	Wong	$12 \mathrm{pm}$	3 Evans	220	Williams	12 pm	289 Cory		
210	Tabrizian	$12 \mathrm{pm}$	9 Evans	221	Williams	3pm	140 Barrows		
211	Wong	1pm	254 Sutardja Dai	222	Williams	$2 \mathrm{pm}$	220 Wheeler		
If none	e of the above,	please e	254 Sutaruja Dar explain:	222	vv iiitaiiis	2pm	220 Wheeler		

This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points, of which you must complete 5. Choose one problem not to be graded by crossing it out in the box below. If you forget to cross out a problem, we will roll a die to choose one for you.

Problem	Maximum Score	Your Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total		
Possible	50	

Practice Midterm 1, MATH 54, Linear Algebra and Differential Equations, Fall 2014

Practice Midterm 1, MATH 54, Linear Algebra and Differential Equations, Fall 2014

Name (Last, First):

1) Decide if the following statements are ALWAYS TRUE **(T)** or SOMETIMES FALSE **(F)**. You do not need to justify your answers. (Correct answers receive 2 points, incorrect answers -2 points, blank answers 0 points.)

a) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly independent vectors in \mathbb{R}^6 , then $\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_4$ are linearly independent vectors.

b) The following linear system is inconsistent

c) If A is a 3×2 matrix and B is a 2×3 matrix, then the rank of the 3×3 matrix AB must be less than or equal to 2.

d) If two $m \times n$ matrices A and B have the same reduced row echelon form, then they have the same column spaces.

e)

$$\det \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 1 & 5 \end{bmatrix} = 24$$

Name (Last, First): _

2) Circle all of the answers that satisfy the questions below. It is possible that any number of the answers (including none) satisfy the questions. (Complete solutions receive 2 points, partial solutions 1 points, but any incorrect circled answer leads to 0 points.)

a) Let A be an $m \times n$ matrix. Which of the following is equal to m?

i) rank(A)ii) dim $Col(A) + \dim Nul(A)$

iii) $rank(A^T)$

iv) dim $Col(A^T) - \dim Nul(A^T)$

v) dim $Col(A^T)$ + dim $Nul(A^T)$

b) Which of the following matrices is in reduced row echelon form?

				Г	• 1	ο Τ		Г1		0	ο Τ		Гı	0	ი	1 T		1	-2	0	0
i) $\begin{bmatrix} 1\\0 \end{bmatrix}$	1	2]							-2	$\begin{bmatrix} 0\\1\\0\end{bmatrix}$	• \		$\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \end{array}$	-2 0	$\begin{bmatrix} 1\\0\\1\end{bmatrix}$	v)	0	0	1	0
	1	0		(ii)	0		111			J		iv)						0	0	0	1
L		-	-	L	. 0	Ţ) (J	0]			0	1	Ţ		0	0	0	0

c) Which of the following conditions insures an $m \times n$ matrix A is invertible?

i) m = n.

- *ii*) There exists an $n \times m$ matrix B such that $AB = I_m$.
- *iii*) The row echelon form of A has the same number of pivot rows as pivot columns.
- iv) $A\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} for every \mathbf{b} .
- v) A is injective and surjective.

d) Which of the following $T : \mathbb{R}^2 \to \mathbb{R}$ is a linear transformation?

i) T(x, y) = x + y + 1ii) T(x, y) = x - 2yiii) $T(x, y) = x^2 + y^2 - (x + y)^2$ iv) T(x, y) = 6(x + 1) + 2(y - 3)v) T(x, y) = 0

e) Suppose $T:\mathbb{R}^3\to\mathbb{R}^3$ has 2-dimensional range and we know

$$T(\mathbf{e}_1) = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \qquad T(\mathbf{e}_3) = \begin{bmatrix} 2\\ 0\\ -1 \end{bmatrix}$$

Which of the following is a possible value of $T(\mathbf{e}_2)$?

$$i) \begin{bmatrix} -1\\ -1\\ 2 \end{bmatrix} \qquad ii) \begin{bmatrix} -2\\ 1\\ 1 \end{bmatrix} \qquad iii) \begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix} \qquad iv) \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \qquad v) \begin{bmatrix} 2\\ 0\\ -1 \end{bmatrix}$$

Name (Last, First): _____

- 3) Consider the matrix
- a) (5 points) Find bases for the column space and null space of

$$A = \left[\begin{array}{rrrr} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 1 \end{array} \right]$$

b) (5 points) For what values of c is the vector

$$\mathbf{v} = \begin{bmatrix} c \\ 2c \\ c^2 \end{bmatrix}$$

in the column space of A?

Name (Last, First):

4) (10 points) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ satisfies the following:

$$T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \qquad T\begin{pmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

Find the standard matrix of T.

Name (Last, First):

5) Decide if each of the following matrices is invertible, and either find its inverse or justify why it is not invertible.

a) (5 points)

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b) (5 points)

$$B = \begin{bmatrix} 1 & 2 & -1 & 1 \\ -4 & 4 & 2 & 2 \\ -2 & -4 & -4 & -2 \\ 1 & 2 & -2 & 1 \end{bmatrix}$$

Name (Last, First):

6) (10 points) Suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are vectors in \mathbb{R}^n and that A is an $m \times n$ matrix. Prove that if $A\mathbf{v}_1, \ldots, A\mathbf{v}_k$ are linearly independent in \mathbb{R}^m , then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent.